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Abstract- The multicast routing protocol in Wireless Sensor Networks (WSN) must be energy aware since the nodes are 
energy constrained due to limited battery life. This gives rise to the need for efficient multicast routing protocol that is 
able to determine multicast routes which satisfies the quality of service guarantees and at the same time conserves energy. 
The transmission of real time multimedia services in wireless sensor networks requires optimal multicast routing protocol 
that satisfies the quality of service guarantees.  The design of such protocol can be formulated as a Multiobjective 
Multicast Routing Problem (MMRP) that attempts to optimize the objectives simultaneously. The proposal provides a 
novel multiobjective Hybrid evolutionary algorithm based on Ant Colony Optimization (ACO) and particle swarm 
optimization (PSO) for MMRP problem. The Hybrid protocol attempts to optimize the end-to-end delay and total 
transmitted power simultaneously to obtain the Pareto-optimal solutions. The simulation results are very promising and 
show that our algorithm is able to find near optimal solution efficiently. 
 
Index Terms- routing, Wireless Sensor Networks (WSN), Ant Colony Optimization (ACO), particle swarm optimization 
(PSO). 

 

1. INTRODUCTION 
Optimization is a scientific discipline that deals with the 

detection of optimal solutions for a problem, among 
alternatives. The optimality of solutions is based on one or 
several criteria that are usually problem and user-
dependent. For example, a structural engineering problem 
can admit solutions that primarily adhere to fundamental 
engineering specifications, as well as to the aesthetic and 
operational expectations of the designer. Constraints can 
be posed by the user or the problem itself, thereby 
reducing the number of prospective solutions. Swarm 
intelligence (SI) is the collective behaviour of 
decentralized, self-organized systems, natural or artificial. 
The concept is employed in work on artificial intelligence. 
The expression was introduced by Gerardo Beni and Jing 
Wang in 1989, in the context of cellular robotic systems.SI 
systems consist typically of a population of simple agents 
interacting locally with one another and with their 
environment. Ant colony optimization (ACO) is a class of 
optimization algorithms modelled on the actions of an ant 
colony. ACO methods are useful in problems that need to 
find paths to goals. Artificial 'ants' simulation agents locate 
optimal solutions by moving through a parameter space 
representing all possible solutions. Particle swarm 
optimization (PSO) is a global optimization algorithm for 
dealing with problems in which a best solution can be 
represented as a point or surface in an n-dimensional space. 
Hypotheses are plotted in this space and seeded with an 
initial velocity, as well as a communication channel 
between the particles. The development and deployment of 
wireless sensor networks (WSN) have taken traditional 
network topologies in new directions. Many of today’s 
sensor applications require networking alternatives that 
reduce the cost and complexity while improving the 
overall reliability. So the hybrid evolutionary approach 
which initiates both ant colony followed by the particle 

swarm, which produces the highly scalable node 
transmission.  The optimizer in the method, iterative 
algorithms such as Evolutionary Algorithms such as, Ant 
Colony Optimization (ACO), and Particle Swarm 
Optimization (PSO) are widely used to find the global 
optimal solutions. However, these algorithms usually take 
too much time to converge when a large-scale network is 
encountered. The Liberated output provides a feasible and 
QOS guaranteed with the metrics it comes with. 

  

2. RELATED WORK 
Maximum-Flow- Minimum-Cost routing algorithm is 

presented. The algorithm computes maximum-flow 
routings for all smooth unicast traffic demands within the 
Capacity   a network subject to routing cost constraints. 
The edge cost can be a distance, reliability, congestion or 
energy metric. It is shown that every network has a finite 
Bandwidth-Cost capacity. The Bandwidth-Distance and 
the Bandwidth-Energy capacities are explored. The routing 
algorithm requires the formulation of two Linear Programs 
(LPs) [1]. The first LP finds a multicommodity Maximum-
Flow, when the flows are constrained to a sub-graph of the 
network to enforce cost constraints. The second LP 
minimizes the routing cost, given that the maximum-flow 
is fixed. A related Constrained Multicast-Max-Flow-Min-
Cost algorithm is also presented, to maximize the 
throughput of a multicast tree using network coding, 
subject to routing cost constraints [2]. These algorithms 
have polynomial-time solutions, whereas traditional 
multipath routing algorithms can be NP-Hard. The 
addition of routing cost constraints can significantly reduce 
the size of the LPs, resulting in faster solutions, with lower 
edge utilizations and with higher energy efficiencies. The 
application of these algorithms to route a, energy-
efficiency and QoS guarantees is presented [3]. When the 
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cost constraints are relaxed, no other unicast routing 
algorithms can achieve larger Maximum Flows, or lower 
costs given the Maximum-Flow rates to be supported; 
these unicast routing algorithms can achieve the lowest 
energy-costs given the Maximum-Flow rates to be 
supported. These routing algorithms have polynomial time 
solutions, in contrast to traditional multipath routing 
algorithms which can be NP-Hard. It is also shown that 
every network has a finite Bandwidth-Cost capacity which 
cannot be exceeded. Two capacities where explored, the 
Bandwidth- Distance capacity and the Bandwidth-Energy 
capacity. The proposed routing algorithms can achieve 
Maximum-Flows with minimal BD and BE costs, subject 
to cost constraints imposed by a network administrator. 
Here also present some new insights into Multicast 
Maximum-Flow-Minimum-Energy routing in networks 
using Network Coding [8]. It is shown that the energy 
costs of different multicast routings that support the same 
multicast flow rate can be significantly different. The 
application of these routing algorithms to route aggregated 
and smoothened video streams from Cloud data centers in 
a proposed Future-Internet network with improved 
throughput, energy-efficiency and QoS guarantees is 
presented. 

Multicast is a form of group communication in which 
data is forwarded concurrently to a set of predefined 
destination. The rapid development in multimedia 
applications like video/audio conferencing, distance 
education and online gaming etc. require multicast 
communication with strict quality-of-service guarantee for 
different parameters such as bounded end-to-end delay, 
delay jitter and bandwidth. The underlying model of 
multicast routing is Steiner tree. Thus, the task of QoS 
based multicast routing is to find an optimal Steiner tree 
satisfying the QoS requirements.  

Wireless Sensor Networks [7] pose additional 
challenges in finding optimal multicast routes due to 
presence of nodes which are severely energy constrained. 
This gives rise to the requirement of a multicast routing 
protocol that optimizes the QoS parameters and is also 
energy efficient. One approach for energy conservation 
[15] is to find routes in multicast communication which 
minimizes the total transmitted power level. Since most of 
the multimedia applications are delay sensitive, we 
consider end-to-end delay as the QoS parameter. The end-
to-end delay is measured as the number of hops the data 
travels from the source to the destination node. Ideally we 
wish to have a path that minimizes the total transmitted 
power level and the end-to-end delay at the same time. 
However, these Objectives are conflicting in nature as 
choosing a path which has lower power level results in 
higher hop count and subsequently higher delay. In such 
circumstances, it is evident that there is a trade-off 
between the two conflicting objectives. 

JPSO Algorithm for Efficient multicast routing 
problem [17] and Steiner tree problem. Starting from the 
source node, by selecting the next link which connects to 
any on-tree node until all destination nodes have been 
added to the tree. In the swarm of JPSOMR does not 
possess a velocity component. Instead, the swarm evolves 

based on different moves to the positions (solutions) of the 
particles. At every iteration of the evolution, each particle 
moves either based on its current position (an inertial 
move) or based on the position of the attractor which is 
chosen by using the weight vector (a cognitive, social or 
global move). Once the particle has jumped to a new 
position, a local search is applied. The particle’s best path 
replacement operator is used to update a particle’s position 
based on that of a chosen attractor. After each move, a 
local search is applied to improve the new particle’s 
position. In the local search implemented here, a simple 
neighborhood operator operates upon the nodes in the tree. 
A neighbor of the current tree is obtained by removing a 
non-destination node and creating a new spanning tree of 
the remaining nodes using the Prim’s spanning tree. For 
the DCLC multicast routing problems [20], the link delay 
function D (e) is defined within the simulator as the 
propagation delay of the link. We assume that queuing and 
transmission delays are negligible. The link cost function 
C (e) is defined as the current total bandwidth on the links 
in the computer network.  

3. EXISTING SYSTEM 
The transmission of real time services in Wireless 

Sensor Networks (WSN) requires optimal multicast 
routing protocol that satisfies the quality of service 
guarantees.  The design of such protocol can be formulated 
as a Multiobjective Multicast Routing Problem (MMRP) 
that attempts to optimize the objectives simultaneously. 
The ant colony based multiobjective algorithm for 
obtaining Steiner tree that balances the total transmitted 
power at the terminal nodes and the hop count. The 
approach uses a pheromone trail matrix for each objective. 
Minimizing the transmission power assignment of all 
forwarders and the hop count of each route will result in a 
Steiner tree with the minimum transmission power and 
least number of forwarders Aggressive power assignment 
to conserve energy results in a Steiner tree with a higher 
number of forwarders and vice versa. The Existing work 
only with 2 objectives and it can be extended by 
considering more than two objective functions. 

The JPSOMR algorithm swarm jump from one position 
to another in the discrete search space by making changes 
to the tree represented by the current position. This has 
been carried out by using path replacement operations 
which have been designed with regard to the specific 
structure and feature of the multicast network. It can be 
preceded with local search method for multiobjective 
routing. 

 
4. PROPOSED SYSTEM 

The project aims at developing hybrid evolutionary 
approach for multiobjective multicast routing problem, the 
computing burden for the micro-simulation is usually very 
heavy as a large number of vehicles are modelled and 
simulated separately. For the optimizer in the method, 
iterative algorithms such as Genetic Algorithms (GA), Ant 
Colony Optimization (ACO), and Particle Swarm 
Optimization (PSO) are widely used to find the global 
optimal solutions. To alleviate the computing burden and 
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speed up the convergence, we build an agent-based routing 
simulator and employ hybrid Optimization as the optimizer. 
We accelerate both the simulator and the optimizer, which 
has been applied successfully in many areas for parallel 
computing.  

The main objective of the MDR problem is to construct 
the optimal multicast tree in the distributed network that 
determines the best routing for the delivery of a message 
from the source node to multiple destination nodes while 
optimizing an International Journal of Hybrid Information 
Technology certain performance criteria and meeting all 
QoS requirements. Recently, with the high demand of fast 
and better quality of services, a number of rigid QoS 
criteria, such as bandwidth, delay, jitter, and packet loss 
rate, have been considered. This QoS multicast routing   
problem has drawn wide spread attention from researchers 
who have been using different methods to solve the 
problem using conventional algorithms. Many 
evolutionary algorithms, such as genetic algorithm, 
particle swarm, and ant colony optimization (ACO), have 
been proposed for solving the MR problem. However PS 
and ACO have practical limitations in real-time multicast 
routing. Both the efficiency of the PSO algorithm and the 
quality of the solution depends on procedures that are 
sensitive to the influence of random swarming sequence. 
The ACO algorithm has many parameters and cannot 
guarantee convergence to the global optimal. A  PSO 
based algorithm to solve the MR problem in by means of 
serial path selection to realize the optimization of a 
multicast tree. The multicast tree can obtain a feasible 
solution by exchanging paths in the vector. 

 
A. Ant Colony Optimization 

It is a population-based meta-heuristic search technique 
that can be used to find approximate solutions to difficult 
optimization problems. 

 

 

Fig. 1 Ant colony Optimization 

In ACO, a set of software agents called artificial 
ants search for good solutions to a given optimization 
problem. To apply ACO, the optimization problem is 
transformed into the problem of finding the best path on a 
weighted graph. The artificial ants (hereafter ants) 
incrementally build solutions by moving on the graph. The 
solution construction process is stochastic and is biased by 
a pheromone model, that is, a set of parameters associated 
with graph components (either nodes or edges) whose 
values are modified at runtime by the ants. The complex 
social behaviors of ants have been much studied by 
science, and computer scientists are now finding that these 
behavior patterns can provide models for solving difficult 
combinatorial optimization problems. The attempt to 
develop algorithms inspired by one aspect of ant behavior, 
the ability to find what computer scientists would call 
shortest paths, has become the field of ant colony 
optimization (ACO), the most successful and widely 
recognized algorithmic technique based on ant behavior. 
The ant colony meta-heuristic is then introduced and 
viewed in the general context of combinatorial 
optimization. Ant Net, an ACO algorithm designed for the 
network routing problem, is described in detail. Ant 
Colony Optimization will be of interest to academic and 
industry researchers, graduate students, and practitioners 
who wish to learn how to implement ACO algorithms. 

1. {Initialization}  
Initialize τιψ and ηιψ, ∀(ιψ).  
2. {Construction}  
For each ant k (currently in state ι) do  
repeat  
choose in probability the state to move into.  
append the chosen move to the k-th ant's set tabuk.  
until ant k has completed its solution.  
end for 
3. {Trail update}  
For each ant move (ιψ) do  
compute ∆τιψ  
update the trail matrix.  
end for  
4. {Terminating condition}  

If not(end test) go to step 2. 
 

B. Particle Swarm Optimization 
In computer science, particle swarm optimization (PSO) 

is a computational method that optimizes a problem by 
iteratively trying to improve a candidate solution with 
regard to a given measure of quality. PSO optimizes a 
problem by having a population of candidate solutions, 
here dubbed particles, and moving these particles around 
in the search-space according to simple mathematical 
formulae over the particle's position and velocity. Each 
particle's movement is influenced by its local best known 
position and is also guided toward the best known 
positions in the search-space, which are updated as better 
positions are found by other particles. This is expected to 
move the swarm toward the best solutions. 
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Fig. 2 Particle Swarm Optimization 

Let S be the number of particles in the swarm, each having 
a position xi ∈ ℝn in the search-space and a velocity vi ∈ 
ℝ

n. Let pi be the best known position of particle i and let g 
be the best known position of the entire swarm. A basic 
PSO algorithm is then: 

• For each particle i = 1, ..., S do:  
o Initialize the particle's position with a 

uniformly distributed random vector: 
xi ~ U(blo, bup), where blo and bup are the 
lower and upper boundaries of the 
search-space. 

o Initialize the particle's best known 
position to its initial position: pi ← xi 

o If ( f(pi) < f(g)) update the swarm's best 
known position: g ← pi 

o Initialize the particle's velocity: vi ~ U(-
|bup-blo|, |bup-blo|) 

• Until a termination criterion is met (e.g. number 
of iterations performed, or a solution with 
adequate objective function value is found), 
repeat:  

o For each particle i = 1, ..., S do:  
� Pick random numbers: rp, rg ~ 

U(0,1) 
� For each dimension d = 1, ..., n 

do:  
� Update the particle's 

velocity: vi,d ← ω vi,d + 
φp rp (pi,d-xi,d) + φg rg 
(gd-xi,d) 

� Update the particle's position: 
xi ← xi + vi 

� If ( f(xi) < f(pi)) do:  
� Update the particle's 

best known position: 
pi ← xi 

� If ( f(pi) < f(g)) update 
the swarm's best 
known position: 
g ← pi 

• Now g holds the best found solution. 
• The parameters ω, φp, and φg are selected by the 

practitioner and control the behaviour and 
efficacy of the PSO method. 

C. Hybrid Evolutionary Approach 
This module is a cooperative development of ACO-

PSO based hybrid system, where it uses the 2 similar 
Evolutionary approach of Ant colony Optimization (ACO) 
and Particle Swarm Optimization (PSO). It works with the 
initiation of Ant colony system and proceed towards the 
Particle Swarm by each step of iteration.  

The ant sub-colony can be regarded as particle, the 
number of ants in sub-colony equates to the number of the 
destination nodes m and also equates to particle’s 
dimension, which guarantees that every ant in  ant sub-
colony corresponds to a destination node, every ant sub- 
colony can generates a multicast tree. The basic process of 
ACO-PSO is: the new solutions are generated by ACO, 
which is regarded current position of particles in PSO, in 
succession, the solution are regarded by velocity update 
and position update, the essential of regulation is that the 
current solution creoss with current best solution of 
corresponding particle and all particles respective by 
certain probability, which extends the search scope of 
solution and avoids prematurity of algorithm , The 
regulated solutions by PSO is used to update pheromone in 
ant colony network, which makes ACO-PSO more effcient. 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3 System Architecture 

 
5. IMPLEMENTATION 

 
A. Bandwidth 

Bandwidth management architecture incorporates three 
ideas: first, we develop a simple rule system that allows 
applications and the network administrator to specify how 
traffic generated by sensors should be treated by the sensor 
network. Second, we show how using multiple SAPs and 
SAP selection method that considers packet loss 
probabilities, path load, and path lengths improves the 
capacity of the network and the performance of individual 
sensor streams. Third, we show that hop by-hop flow 
control, rather than end-to-end congestion control, is a 
better way to cope with the nature of sensor network traffic 
and avoids unnecessary packet losses that waste valuable 
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wireless network bandwidth. Our experimental results 
from a 40-node indoor wireless sensor test bed show that 
these three techniques are simple to implement and allow 
scarce network bandwidth to be used efficiently. 

 
 

 
 

Fig. 4 Bandwidth utilization with 4 hops 
 
 

 
 

Fig. 5 Pareto graph for Bandwidth 
 
B. Energy 

Energy efficient layout of wireless sensor network in 
which sensors communicate with each other to transmit 
their data to a high energy communication node which acts 
as an interface between data processing unit and sensors. 
Optimization of sensor locations is essential to provide 
communication for a longer duration. It discusses an 
energy efficient layout with good coverage based on 
Multi-objective Particle Swarm Optimization algorithm. 

 

 
 

Fig. 6 Energy utilization with 4 hops 

 
 

 
 

Fig. 7 Pareto graph for Energy Optimization 

 
 

C. Through put 
Allowing high-priority packets to overwrite low priority 

packets when buffer space runs out can lead to an 
improvement in high-priority streams’ throughput, MAC-
layer support is needed to ensure that if any high-priority 
packets are waiting to be sent, their nodes will win any 
contention competition at the MAC layer. In this section, 
we show how the MAC layer can be modified to 
accomplish exactly that. The dark grey bars show the 
performance of our implementation, which comes very 
close to the desired bandwidth allocation. The light grey 
bars show that without our modifications, low-priority 
traffic would consume some of the high-priority traffic’s 
bandwidth. 

 

 
 

Fig. 8 Pareto-graph for Energy conserved with maximum 
throughput 

 
      A complete system will of course need to optimize 
both energy and bandwidth, and it would be interesting to 
study which of our techniques are problematic for energy 
consumption. For example, some of our techniques are 
optimized by nodes overhearing each other’s transmissions, 
which requires nodes to be on and listening on the wireless 
channel when they might instead sleep to save energy. It 
might be possible to run topology formation algorithms 
like Span that produce and change topologies on slower 
time-scales, and our bandwidth management schemes on 
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each individual instance of the network topology. We have 
implemented the techniques of the Hybrid Optimization 
toward Multiobjective multicast routing which in turn 
shows efficiency of 82% in Throughput and 98% of 
Energy Conservative performance are being carried out . 

 
6. CONCLUSIONS 
The reason of selecting these two search algorithms for 

empirical study lies in that, biological evolution of swarm 
intelligence; PSO is the effective algorithm in the field of 
swarm intelligence and ACO for its own advantages of 
stochastic search. PSO is more effective for the case of 
large candidate service number. An ACO with pheromone 
matrix and JPSO techniques have been adopted to solve 
the QoS multicast routing problem in communication 
network. The solution generated by ACO is regulated by 
position update strategy of PSO, which extends search 
scope and increase avoids local optimization efficiently. 
The method of positioning update in JPSO is notified in 
order to adapt our discrete multiobjective multicast routing 
problem. This proposed algorithm utilizes PSO algorithm 
that has emerged as a new heuristic that can efficiently 
solve large-scale optimization problems. This study differs 
from existing literature in the following aspects: First, in 
this study various QoS measures are considered such as 
cost, bandwidth, delay and jitter. The proposed model 
treats these constraints separately, and can be extended to 
add more constraints. Second, new discrete PSO operators 
have been presented to modify the original PSO velocity 
and position update rules to the discrete solution space in 
the multicast routing problem. Third, a new adjustable 
PSO-ACO hybrid multicast routing algorithm which 
combines PSO with genetic operators was proposed. The 
performance of the adjustable hybrid model is optimized 
by two driving parameters that give preference to either 
PSO or ACO The proposed hybrid algorithm can 
overcome the disadvantages of both PSO and ACO, and 
can achieve better QoS performance.   
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