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Abstract- The multicast routing protocol in Wireless Sensetworks (WSN) must be energy aware since the nades
energy constrained due to limited battery life.sTgives rise to the need for efficient multicasitiog protocol that is
able to determine multicast routes which satigtiesquality of service guarantees and at the saneedonserves energy.
The transmission of real time multimedia servigewireless sensor networks requires optimal mugticauting protocol
that satisfies the quality of service guaranted$ie design of such protocol can be formulated adultiobjective
Multicast Routing Problem (MMRP) that attempts imize the objectives simultaneously. The propgsalides a
novel multiobjective Hybrid evolutionary algorithimased on Ant Colony Optimization (ACO) and partislwarm
optimization (PSO) for MMRP problem. The Hybrid ool attempts to optimize the end-to-end delay totdll
transmitted power simultaneously to obtain the f@aoptimal solutions. The simulation results areyvgromising and
show that our algorithm is able to find near optis@ution efficiently.

Index Terms- routing, Wireless Sensor Networks (WSN), Ant Col@mptimization (ACO), particle swarm optimization
(PSO).

swarm, which produces the highly scalable node
1. INTRODUCTION transmission. The optimizer in the method, itemati
Optimizationis a scientific discipline that deals with thealgorithms such as Evolutionary Algorithms such Aust
detection of optimal solutions for a problem, amon@olony Optimization (ACO), and Particle Swarm
alternatives. The optimality of solutions is basedone or Optimization (PSO) are widely used to find the glbb
several criteria that are usually problem and useptimal solutions. However, these algorithms usutike
dependent. For example, a structural engineeringlem too much time to converge when a large-scale nétugr
can admit solutions that primarily adhere to fundatal encounteredThe Liberated output provides a feasible and
engineering specifications, as well as to the atisttand QOS guaranteed with the metrics it comes with.
operational expectations of the designer. Condfaian
be posed by the user or the problem itself, thereby
reducing the number of prospective solutions. Swarm 2. RELATED WORK

intelligence  (SI) is the collective behaviour of Maximum-Flow- Minimum-Cost routing algorithm is
decentralized, Self-organized SyStemS, naturalrtificaal. presented_ The a|gorithm Computes maximum-flow
The concept is employed in work on artificial ifitggnce. routings for all smooth unicast traffic demandshivitthe
The expression was introduced by Gerardo Beni &gl JCapacity a network subject to routing cost caists.
Wang in 1989, in the context of cellular rObOtiSWnS.Sl The edge cost can be a distance, re||ab|||ty, Cgmge or
systems consist typically of a population of simalgents  energy metric. It is shown that every network haie
interacting locally with one another and with theigandwidth-Cost capacity. The Bandwidth-Distance and
environment. Ant colony optimization (ACO) is as$aof the Bandwidth-Energy capacities are explored. Dugimg
Optimization algorithms modelled on the actionsanfant a|gorithm requires the formulation of two LineaDBrams
colony. ACO methods are useful in problems thadrtee (|ps) [1]. The first LP finds a multicommodity Mamiim-
find paths to goals. Artificial 'ants' Simulatiog@ts locate Flow, when the flows are constrained to a Sub-gmnhe
optimal solutions by moving through a parametercepanetwork to enforce cost constraints. The second LP
representing all possible solutions. Particle swarfinimizes the routing cost, given that the maxinmilov
optimization (PSO) is a global optimization algbnit for js fixed. A related Constrained Multicast-Max-Fldwin-
dealing with problems in which a best solution da& Cost algorithm is also presented, to maximize the
represented as a point or surface in an n-dimealgpace. throughput of a multicast tree using network coging
Hypotheses are plotted in this space and seedédanit sybject to routing cost constraints [2]. These @ilgms
initial velocity, as well as a communication channgave polynomial-time solutions, whereas traditional
between the particles. The development and deployofe myitipath routing algorithms can be NP-Hard. The
wireless sensor networks (WSN) have taken traditiomhddition of routing cost constraints can signifitaneduce
network topologies in new directions. Many of toay the size of the LPs, resulting in faster solutiomish lower
sensor applications require networking alternatitleat edge utilizations and with higher energy efficiesci The
reduce the cost and complexity while improving thgpplication of these algorithms to route a, energy-

overall reliability. So the hybrid evolutionary appch efficiency and QoS guarantees is presented [3].\\the
which initiates both ant colony followed by the fice
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cost constraints are relaxed, no other unicastimgut based on different moves to the positions (solsjiari the
algorithms can achieve larger Maximum Flows, ordow particles. At every iteration of the evolution, bazarticle
costs given the Maximum-Flow rates to be supportesioves either based on its current position (antiader
these unicast routing algorithms can achieve thvee$d move) or based on the position of the attractorcihis
energy-costs given the Maximum-Flow rates to b&hosen by using the weight vector (a cognitive jaoar
supported. These routing algorithms have polynotiia¢ global move). Once the particle has jumped to a new
solutions, in contrast to traditional multipath tiag position, a local search is applied. The partickest path
algorithms which can be NP-Hard. It is also showatt replacement operator is used to update a partiptesgion
every network has a finite Bandwidth-Cost capaeihjch based on that of a chosen attractor. After eachemav
cannot be exceeded. Two capacities where explahed, local search is applied to improve the new parscle
Bandwidth- Distance capacity and the Bandwidth-Bper position. In the local search implemented hereingple
capacity. The proposed routing algorithms can aehieneighborhood operator operates upon the node®itrek.
Maximum-Flows with minimal BD and BE costs, subjecA neighbor of the current tree is obtained by reimg\a
to cost constraints imposed by a network admiristra non-destination node and creating a new spannéewy df
Here also present some new insights into Multicafte remaining nodes using the Prim’s spanning tFee.
Maximum-Flow-Minimum-Energy routing in networksthe DCLC multicast routing problems [20], the lidklay
using Network Coding [8]. It is shown that the aner function D (e) is defined within the simulator aset
costs of different multicast routings that suppbe same propagation delay of the link. We assume that qugeaind
multicast flow rate can be significantly differenthe transmission delays are negligible. The link castcfion
application of these routing algorithms to routgregated C (e) is defined as the current total bandwidthttanlinks
and smoothened video streams from Cloud data ceimterin the computer network.
a proposed Future-Internet network with improved
throughput, energy-efficiency and QoS guarantees is 3. EXISTING SYSTEM
presented. The transmission of real time services in Wireless
Multicast is a form of group communication in whichSensor Networks (WSN) requires optimal multicast
data is forwarded concurrently to a set of predefinrouting protocol that satisfies the quality of seev
destination. The rapid development in multimediguarantees. The design of such protocol can eulated
applications like video/audio conferencing, dismncs a Multiobjective Multicast Routing Problem (MMRP
education and online gaming etc. require multicatiat attempts to optimize the objectives simultarsto
communication with strict quality-of-service guateafor The ant colony based multiobjective algorithm for
different parameters such as bounded end_to_erﬂy’depbtaining Steiner tree that balances the totalstratted
delay jitter and bandwidth. The underlying model dfower at the terminal nodes and the hop count. The
multicast routing is Steiner tree. Thus, the ta$kQoS approach uses a pheromone trail matrix for eactotip.
based multicast routing is to find an optimal Steitree Minimizing the transmission power assignment of all
satisfying the QoS requirements. forwarders and the hop count of each route williteis a
Wireless Sensor Networks [7] pose additiondbteiner tree with the minimum transmission powed an
challenges in finding optimal multicast routes dtee least number of forwarders Aggressive power assggim
presence of nodes which are severely energy camstita tO conserve energy results in a Steiner tree wittigher
This gives rise to the requirement of a multicasiting number of forwarders and vice versa. The Existiragkw
protocol that optimizes the QoS parameters andiss aonly with 2 objectives and it can be extended by
energy efficient. One approach for energy cons@mwat considering more than two objective functions.

[1.5]. iS. to find routes in multicast communica_ltiorhivxh The JPSOMR algorithm swarm jump from one position
minimizes the total transmitted power level. Sinoest of to another in the discrete search space by makingges
the _r;uIUm((ajdla agp:jhclatlons hare dSeIay SenSItIVn?di}eV\fS the tree represented by the current positions Tlas
consider end-to-end delay as the QoS parametere been carried out by using path replacement opesatio

to-enld ;jelay PI15 measured ?15 t(;'e r_lum_ber ofdholc;siataa which have been designed with regard to the specifi
travels from the source to the destination nodeallg we structure and feature of the multicast networkcdh be

wish to have a path that minimizes the total tratteth o oqed with local search method for multiobjetiv
power level and the end-to-end delay at the same.ti routing

However, these Objectives are conflicting in natase
choosing a path which has lower power level resits
higher hop count and subsequently higher delaysulch
circumstances, it is evident that there istrade-off

4. PROPOSED SYSTEM

The project aims at developing hybrid evolutionary
o e approach for multiobjective multicast routing preinl, the
between the two conflicting objectives. _computing burden for the micro-simulation is usyaféry

JPSO Algorithm for Efficient multicast routlnghefwy as a large number of vehicles are modell@l an
problem [17] and Steiner tree problem. Startingrirthe  gimjated separately. For the optimizer in the meéth
source node, by selecting the next link which caf®1€0 jarative algorithms such as Genetic Algorithms JGAnt
any on-tree node until all destination nodes haeenb Colony Optimization (ACO), and Particle Swarm

added to the tree. In the swarm of JPSOMR does i@imization (PSO) are widely used to find the glob
possess a velocity component. Instead, the swaoives/ ntimga| solutions. To alleviate the computing burdend

2



International Journal of Research in Advent Tecbgygl Vol.2, No.3, March 2014
E-ISSN: 2321-9637

speed up the convergence, we build an agent-baséidg In ACO, a set of software agents called artificial
simulator and employ hybrid Optimization as theimpter. ants search for good solutions to a given optiropat
We accelerate both the simulator and the optimimbich problem. To apply ACO, the optimization problem is
has been applied successfully in many areas faallphr transformed into the problem of finding the beghpan a
computing. weighted graph. The artificial ants (hereafter Jants
The main objective of the MDR problem is to construincrementally build solutions by moving on the draphe
the optimal multicast tree in the distributed netkvthat solution construction process is stochastic armaised by
determines the best routing for the delivery of @ssage a pheromone model, that is, a set of parametecxiassd
from the source node to multiple destination nodbfie with graph components (either nodes or edges) whose
optimizing an International Journal of Hybrid Infeation values are modified at runtime by the ants. The pem
Technology certain performance criteria and meetilg social behaviors of ants have been much studied by
QoS requirements. Recently, with the high demanthstf science, and computer scientists are now findiag tthese
and better quality of services, a number of rigioSQ behavior patterns can provide models for solvirféjodilt
criteria, such as bandwidth, delay, jitter, andkghdoss combinatorial optimization problems. The attempt to
rate, have been considered. This QoS multicastngutdevelop algorithms inspired by one aspect of ahtabier,
problem has drawn wide spread attention from rebeas the ability to find what computer scientists woutdll
who have been using different methods to solve tkhortest paths, has become the field of ant colony
problem using conventional algorithms.  Manyptimization (ACO), the most successful and widely
evolutionary algorithms, such as genetic algorithmecognized algorithmic technique based on ant hehav
particle swarm, and ant colony optimization (ACG3ve The ant colony meta-heuristic is then introducedl an
been proposed for solving the MR problem. HowevBr Riewed in the general context of combinatorial
and ACO have practical limitations in real-time tredst optimization. Ant Net, an ACO algorithm designed fioe
routing. Both the efficiency of the PSO algorithmdathe network routing problem, is described in detail. tAn
quality of the solution depends on procedures #rat Colony Optimization will be of interest to acadenaind
sensitive to the influence of random swarming sagee industry researchers, graduate students, and twaetis
The ACO algorithm has many parameters and canmwdto wish to learn how to implement ACO algorithms.
guarantee convergence to the global optimal. A PSO
based algorithm to solve the MR problem in by meas 1_{|nitialization}
serial path selection to realize the optimizatioh & |njtialize ruy andnuy, V().
multicast tree. The multicast tree can obtain asif#@ 2 (Construction}

solution by exchanging paths in the vector. For each ant k (currently in stajedo
repeat
A. Ant Colony Optimization choose in probability the state to move into.
Itis a population-based meta-heuristic searchriegie  append the chosen move to the k-th ant's set tabuk.
that can be used to find approximate solutiondffaalt until ant k has completed its solution.
optimization problems. end for
_ 3. {Trail update}
e For each ant movey() do
computeAtuy
update the trail matrix.
end for

4. {Terminating condition}
If not(end test) go to step 2.

Remove agent

[remoe s |

B. Particle Swarm Optimization

In computer science, particle swarm optimizatioBQ
is a computational method that optimizes a problem
<,>z, iteratively tryir_lg to improve a candidate solutiqvith

regard to a given measure of quality. PSO optimizes
b e problem by having a population of candidate sohgjo
here dubbed particles, and moving these partiadlesnd
in the search-space according to simple mathenhatica
formulae over the particle's position and velociBach
particle’s movement is influenced by its local besbwn
position and is also guided toward the best known
positions in the search-space, which are updatdubtisr
PP R— positions are found by other particles. This isextpd to
o ) move the swarm toward the best solutions.

Calculate
placement

Fig. 1 Ant colony Optimization
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* Nowg holds the best found solution.

* The parameters, ¢, andgg are selected by the
practitioner and control the behaviour and
efficacy of the PSO method.

C. Hybrid Evolutionary Approach

This module is a cooperative development of ACO-
PSO based hybrid system, where it uses the 2 simila
Evolutionary approach of Ant colony OptimizationG®)
and Particle Swarm Optimization (PSO). It workshatite
initiation of Ant colony system and proceed towatts
Particle Swarm by each step of iteration.

The ant sub-colony can be regarded as particle, the
number of ants in sub-colony equates to the nurabtre
destination nodes m and also equates to particle’s
dimension, which guarantees that every ant in sak

Fig. 2 Particle Swarm Optimization colony corresponds to a destination node, everysaht

colony can generates a multicast tree. The basicegs of

Let Sbe the number of particles in the swarm, eachrftaviACO-PSO is: the new solutions are generated by ACO,
a positionx; € R" in the search-space and a velogiffg which is regarded current position of particlesPi80, in
R". Letp; be the best known position of parti¢cland letg succession, the solution are regarded by velogityate
be the best known position of the entire swarm.a&id and position update, the essential of regulatiothas the

PSO algorithm is then:

» For each particle=1, ..

current solution creoss with current best solutioh
corresponding particle and all particles respectiwe

.Sdo: certain probability, which extends the search scope

o Initialize the particle's position with g sSolution and avoids prematurity of algorithm , The
uniformly distributed random vector: regulated solutions by PSO is used to update pharerm
x; ~ U(byo, byp), Whereby, andb,, are the ant colony network, which makes ACO-PSO more efiicie

lower and upper boundaries of the

search-space.
o Initialize the

position to its initial positionp; « X; P —;

o If (f(p) <f(g))

known positiong <« p;
o Initialize the particle's velocityw; ~ U(-
|bup'blolr bup'blol)
* Until a termination criterion is met (e.g. number
of iterations performed, or a solution with
adequate objective function value is found),

repeat:

particle's best known

cuter

update the swarm's best -

ACO
Implementation

Particle Swarm
Defragmentation
Implementation /CRC

o For each particle=1, ...,Sdo: s
= Pick random numbersy, rg ~
U(0,1) Fig. 3 System Architecture
= For each dimensiod =1, ...,n
do: 5. IMPLEMENTATION
= Update the particle's
velocity: vig«— o Vig+ A Bandwidth
@p Ip (PiaXia) + g Fg Bandwidth management architecture incorporateethre
(GoXia) . ideas: first, we develop a simple rule system #ibiws
= Update the particle’s position:appjications and the network administrator to Syetow
Xi <= Xi +Vi traffic generated by sensors should be treatethdgénsor
= If (f(x) <f(py)) do: network. Second, we show how using multiple SAP$ an

Update the particle’s SAP  selection method that considers packet loss
best known position: probabilities, path load, and path lengths improties
Pi — X capacity of the network and the performance ofvitidial
If (f(pi) < f(g)) update sensor streams. Third, we show that hop by-hop flow
the  swarm's  best control, rather than end-to-end congestion conti®la
known position:  petter way to cope with the nature of sensor nekwrarfic
g<—pi and avoids unnecessary packet losses that wastabial

4
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wireless network bandwidth. Our experimental result Fig. 6 Energy utilization with 4 hops

from a 40-node indoor wireless sensor test bed dhaiv

these three techniques are simple to implementaiod/
scarce network bandwidth to be used efficiently.
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Fig. 4 Bandwidth utilization with 4 hops
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Fig. 5 Pareto graph for Bandwidth

22,0000 / gateway noded
B. Energy 1
.. . . 20.0000
Energy efficient layout of wireless sensor netwark .
. . . . 18.0000
which sensors communicate with each other to transm

their data to a high energy communication node kvhicts
as an interface between data processing unit amsbese
Optimization of sensor locations is essential tovjae
communication for a longer duration. It discusses
energy efficient layout with good coverage based
Multi-objective Particle Swarm Optimization algdmib.

X Graph
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Fig. 7 Pareto graph for Energy Optimization

C. Through put

Allowing high-priority packets to overwrite low mriity
packets when buffer space runs out can lead to an
improvement in high-priority streams’ throughput AG-
layer support is needed to ensure that if any pigbrity
packets are waiting to be sent, their nodes with any
contention competition at the MAC layer. In thistien,
we show how the MAC layer can be modified to
accomplish exactly that. The dark grey bars show th
performance of our implementation, which comes very
close to the desired bandwidth allocation. Thetligrey
bars show that without our modifications, low-pitpr
traffic would consume some of the high-priorityflics
bandwidth.

1y ) m 5257 Qs O

T ot |FitPagewidth 3

Energy Consumed vs Throughput

Energy (Joules)

gateway nodel
.

16.0000

14.0000

12.0000

a 10.0000

Throughput(bytes) x 103
on 0.5000 1.0000 1.5000 2.0000 2.5000

Fig. 8 Pareto-graph for Energy conserved with maxim
throughput

A complete system will of course need to mpte
both energy and bandwidth, and it would be inténgsto
study which of our techniques are problematic foergy
consumption. For example, some of our techniques ar
optimized by nodes overhearing each other’s trasgsons,
which requires nodes to be on and listening onwtineless
channel when they might instead sleep to save gnérg
might be possible to run topology formation aldumits
like Span that produce and change topologies oweslo
time-scales, and our bandwidth management schemes o
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each individual instance of the network topologye Yave
implemented the techniques of the Hybrid Optimaati
toward Multiobjective multicast routing which in rtu

[5]

shows efficiency of 82% in Throughput and 98% of

Energy Conservative performance are being carnigd o

6. CONCLUSIONS

The reason of selecting these two search algorifoms [6]

empirical study lies in that, biological evolutiof swarm
intelligence; PSO is the effective algorithm in firedd of
swarm intelligence and ACO for its own advantagés
stochastic search. PSO is more effective for thee aaf

0

large candidate service number. An ACO with phenoenol7]
matrix and JPSO techniques have been adopted te sol
the QoS multicast routing problem in communication

network. The solution generated by ACO is reguldigd

position update strategy of PSO, which extendscbear

scope and increase avoids local optimization effity.
The method of positioning update in JPSO is natifie
order to adapt our discrete multiobjective multicasiting
problem. This proposed algorithm utilizes PSO atpor
that has emerged as a new heuristic that can effigi
solve large-scale optimization problems. This stdiffers
from existing literature in the following aspectrst, in

[9]

this study various QoS measures are considered &sich
cost, bandwidth, delay and jitter. The proposed ehod

treats these constraints separately, and can keaded to
add more constraints. Second, new discrete PSGuiopser
have been presented to modify the original PSOcitglo
and position update rules to the discrete solusijpace in
the multicast routing problem. Third, a new adjbia

[10]

PSO-ACO hybrid multicast routing algorithm which

combines PSO with genetic operators was proposke.
performance of the adjustable hybrid model is ojziduh
by two driving parameters that give preference ithee

T11]

PSO or ACO The proposed hybrid algorithm can

overcome the disadvantages of both PSO and ACO,
can achieve better QoS performance.
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